Двигатель наружного сгорания принцип работы. Какие бывают двигатели внешнего сгорания

Обострение глобальных проблем, требующих срочного решения (истощение природных ресурсов, загрязнение окружающей среды и т. д.), привело в конце XX века к необходимости принятия ряда международных и российских законодательных актов в области экологии, природопользования и энергосбережения. Основные требования этих законов направлены на сокращение выбросов СО2, ресурсо- и энергосбережение, перевод автотранспорта на экологически чистые моторные топлива и т.д.

Одним из перспективных путей решения этих задач является разработка и широкое внедрение энергопреобразующих систем на основе двигателей (машин) Стирлинга. Принцип работы таких двигателей был предложен в 1816 году шотландцем Робертом Стирлингом. Это машины, работающие по замкнутому термодинамическому циклу, в котором циклические процессы сжатия и расширения происходят при различных уровнях температур, а управление потоком рабочего тела осуществляется путем изменения его объема.

Двигатель Стирлинга является уникальной тепловой машиной, поскольку его теоретическая мощность равна максимальной мощности тепловых машин (цикла Карно). Он работает за счет теплового расширения газа, за которым следует сжатие газа при его охлаждении. Двигатель содержит некоторый постоянный объем рабочего газа, который перемещается между «холодной» частью (обычно имеющей температуру окружающей среды) и «горячей» частью, которая нагревается за счет сжигания различного топлива или за счет других источников теплоты. Нагрев производится снаружи, поэтому двигатель Стирлинга относят к двигателям внешнего сгорания (ДВПТ). Поскольку, по сравнению с ДВС, в двигателях Стирлинга процесс горения осуществляется вне рабочих цилиндров и протекает равновесно, рабочий цикл реализуется в замкнутом внутреннем контуре при относительно малых скоростях повышения давления в цилиндрах двигателя, плавном характере теплогидравлических процессов рабочего тела внутреннего контура и при отсутствии газораспределительного механизма клапанов.

Необходимо отметить, что за рубежом уже начато производство двигателей Стирлинга, технические характеристики которых превосходят ДВС и газотурбинные установки (ГТУ). Так, двигатели Стирлинга фирм «Philips», «STM Inc.», «Daimler Benz», «Solo», «United Stirling» мощностью от 5 до 1200 кВт имеют к.п.д. более 42%, рабочий ресурс более 40 тыс. часов и удельную массу от 1,2 до 3,8 кг/кВт.

В мировых обзорах по энергопреобразующей технике двигатель Стирлинга рассматривается как наиболее перспективный в XXI веке. Низкий уровень шума, малая токсичность отработанных газов, возможность работы на различных топливах, большой ресурс, хорошие характеристики крутящего момента - все это делает двигатели Стирлинга более конкурентоспособными в сравнении с ДВС.

Где могут применяться двигатели Стирлинга?

Автономные энергетические установки с двигателями Стирлинга (стирлинг-генераторы) могут найти применение в регионах России, где нет запасов традиционных энергоносителей – нефти и газа. В качестве топлива можно использовать торф, древесину, сланцы, биогаз, уголь, отходы сельского хозяйства и лесоперерабатывающей промышленности. Соответственно, исчезает проблема с энергообеспечением многих регионов.

Такие энергетические установки экологически чисты, так как концентрация вредных веществ в продуктах сгорания почти на два порядка ниже, чем у дизельных электростанций. Поэтому стирлинг-генераторы можно устанавливать в непосредственной близости от потребителя, что позволит избавиться от потерь на передачу электроэнергии. Генератор мощностью 100 кВт может обеспечить электроэнергией и теплом любой населенный пункт с населением более 30-40 человек.

Автономные энергетические установки с двигателями Стирлинга найдут широкое применение и в нефтегазовой промышленности РФ при освоении новых месторождений (особенно в условиях Крайнего Севера и шельфа арктических морей, где нужна серьезная энерговооруженность разведочных, буровых, сварочных и других работ). В качестве топлива здесь можно использовать неочищенный природный газ, попутный нефтяной газ и газовый конденсат.

Сейчас в РФ ежегодно пропадает до 10 млрд. куб. м попутного газа. Собирать его сложно и дорого, использовать в качестве моторного топлива для двигателей внутреннего сгорания нельзя из-за постоянно меняющегося фракционного состава. Чтобы газ не загрязнял атмосферу, он попросту сжигается. В то же время его использование в качестве моторного топлива даст существенный экономический эффект.

Энергоустановки мощностью 3-5 кВт целесообразно использовать в системах автоматизации, связи и катодной защиты на магистральных газопроводах. А более мощные (от 100 до 1000 кВт) - для электро- и теплоснабжения больших вахтовых поселков газовиков и нефтяников. Установки свыше 1 тыс. кВт могут применяться на наземных и морских буровых объектах нефтегазовой промышленности.

Проблемы создания новых двигателей

Двигатель, предложенный самим Робертом Стирлингом, имел значительные массо-габаритные характеристики и низкий к.п.д. Из-за сложности процессов в таком двигателе, связанных с непрерывным движением поршней, первый упрощенный математический аппарат был разработан только в 1871 году пражским профессором Г. Шмидтом. Предложенный им метод расчета основывался на идеальной модели цикла Стирлинга и позволял создавать двигатели с к.п.д. до 15%. Лишь к 1953 году голландской фирмой «Филипс» были созданы первые высокоэффективные двигатели Стирлинга, превосходящие по характеристикам двигатели внутреннего сгорания.

В России попытки создания отечественных двигателей Стирлинга предпринимались неоднократно, однако успеха не имели. Есть несколько основных проблем, сдерживающих их разработку и широкое применение.

Прежде всего это создание адекватной математической модели проектируемой машины Стирлинга и соответствующего метода расчета. Сложность расчета определяется сложностью реализации термодинамического цикла Стирлинга в реальных машинах, обусловленной нестационарностью тепломассового обмена во внутреннем контуре - вследствие непрерывного движения поршней.

Отсутствие адекватных математических моделей и методов расчета - главная причина неудач ряда зарубежных и отечественных предприятий в разработке как двигателей, так и холодильных машин Стирлинга. Без точного математического моделирования доводка проектируемых машин превращается в многолетние изнурительные экспериментальные исследования.

Еще одна проблема заключается в создании конструкций отдельных узлов, сложностях с уплотнениями, регулированием мощности и т.д. Трудности конструктивного исполнения обусловлены применяемыми рабочими телами, в качестве которых используется гелий, азот, водород и воздух. Гелий, например, обладает сверхтекучестью, что диктует повышенные требования к уплотняющим элементам рабочих поршней, и т. д.

Третья проблема - высокий уровень технологии производства, необходимость применения жаростойких сплавов и металлов, новых методов их сварки и пайки.

Отдельный вопрос - изготовление регенератора и насадки для него для обеспечения, с одной стороны, высокой теплоемкости, а с другой - низкого гидравлического сопротивления.

Отечественные разработки машин Стирлинга

В настоящее время в России накоплен достаточный научный потенциал для создания высокоэффективных двигателей Стирлинга. Значительные результаты были достигнуты в ООО «Инновационно-исследовательский центр «Стирлинг-технологии». Специалистами были проведены теоретико-экспериментальные исследования для разработки новых методов расчета высокоэффективных двигателей Стирлинга. Основные направления работ связаны с применением двигателей Стирлинга в когенерационных установках и системах использования теплоты отработанных газов, например в мини-ТЭЦ. В результате были созданы методики разработки и опытные образцы двигателей мощностью 3 кВт.

Особое внимание в ходе исследований уделялось проработке отдельных узлов машин Стирлинга и их конструктивного исполнения, а также созданию новых принципиальных схем установок различного функционального назначения. Предлагаемые технические решения с учетом того, что машины Стирлинга менее дороги в эксплуатации, позволяют повысить экономическую эффективность применения новых двигателей по сравнению с традиционными преобразователями энергии.

Производство двигателей Стирлинга является экономически целесообразным с учетом практически неограниченного спроса на экологически чистое и высокоэффективное энергетическое оборудование как в России, так и за рубежом. Однако без участия и поддержки государства и крупного бизнеса проблема их серийного производства не может быть решена в полном объеме.

Как помочь производству двигателей Стирлинга в России?

Очевидно, что инновационная деятельность (особенно освоение базисных инноваций) - сложный и рискованный вид хозяйственной деятельности. Поэтому она должна опираться на механизм государственной поддержки, особенно «на старте», с последующим переходом на обычные рыночные условия.

Механизм создания в России крупномасштабного производства машин Стирлинга и энергопреобразующих систем на их основе мог бы включать:
- прямое долевое бюджетное финансирование инновационных проектов по машинам Стирлинга;
- косвенные меры поддержки за счет освобождения продукции, выпускаемой по стирлинг-проектам, от НДС и других налогов федерального и регионального уровней в течение первых двух лет, а также предоставление налогового кредита по такой продукции на последующие 2-3 года (учитывая, что издержки освоения принципиально новой продукции нецелесообразно включать в ее цену, т.е. в расходы производителя или потребителя);
- исключение из налогооблагаемой базы по налогу на прибыль вклада предприятия в финансирование стирлинг-проектов.

В дальнейшем, на этапе устойчивого продвижения энергетического оборудования на основе машин Стирлинга на внутреннем и внешнем рынках, восполнение капиталов для расширения производства, технического переоснащения и поддержки очередных проектов по производству новых типов оборудования может осуществляться за счет прибыли и продажи акций успешно освоенного производства, кредитных ресурсов коммерческих банков, а также привлечения иностранных инвестиций.

Можно предположить, что благодаря наличию технологической базы и накопленного научного потенциала в проектировании машин Стирлинга, при разумной финансовой и технической политике Россия может уже в ближайшем будущем стать мировым лидером в области производства новых экологически чистых и высокоэффективных двигателей.

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

Двигатель внешнего сгорания

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления - в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой - расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой - высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз - возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор - полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.

Несмотря на свои высокие показатели, современный двигатель внутреннего сгорания начинает устаревать. Его к. п. д. достиг, пожалуй, своего предела. Шум, вибрация, отравляющие воздух газы и другие присущие ему недостатки заставляют ученых искать новые решения, пересматривать возможности давно «забытых» циклов. Одним из «возрожденных» двигателей является стирлинг.

Еще в 1816 г. шотландский священник и ученый Роберт Стирлинг запатентовал двигатель, в котором топливо и воздух, поступающие в зону горения, никогда не попадают внутрь цилиндра. Они, сгорая, лишь нагревают находящийся в нем рабочий газ. Это и дало основание назвать изобретение Стирлинга двигателем внешнего сгорания.

Роберт Стирлинг построил несколько двигателей; последний из них имел мощность 45 л. с. и проработал на шахте в Англии более трех лет (до 1847 г.). Эти двигатели были очень тяжелыми, занимали много места и внешне напоминали паровые машины.

Для мореплавания двигатели внешнего сгорания впервые были применены в 1851 г. шведом Джоном Эриксоном. Построенное им судно «Эриксон» благополучно пересекло Атлантический океан из Америки в Англию с силовой установкой, состоявшей из четырех двигателей внешнего сгорания. В век паровых машин это было сенсацией. Однако силовая установка Эриксона развивала всего 300 л. с., а не 1000, как ожидалось. Двигатели имели огромные размеры (диаметр цилиндра 4,2 м, ход поршня 1,8 м). Расход угля получился не меньше, чем у паровых машин. Когда судно пришло в Англию, оказалось, что двигатели не пригодны для дальнейшей эксплуатации, так как у них прогорели днища цилиндров. Чтобы вернуться в Америку, пришлось заменить двигатели обычной паровой машиной. На обратном пути судно попало в аварию и затонуло со всем экипажем.

Маломощные двигатели внешнего сгорания в конце прошлого века применялись в домах для перекачивания воды, в типографиях, на промышленных предприятиях, в том числе на петербургском заводе Нобеля (ныне «Русский дизель»), Устанавливались они и на мелких судах. Стирлинги выпускались во многих странах, в том числе в России, где они назывались «тепло и сила». Ценили их за бесшумность и безопасность работы, чем они выгодно отличались от паровых машин.

С развитием двигателей внутреннего сгорания о стирлингах забыли. В энциклопедическом словаре Брокгауэа и Эфрона о них написано следующее: «Безопасность от взрывов составляет главную выгодную сторону калорических машин, благодаря которой они могут опять войти в употребление, если найдут для их построения и смазки новые материалы, лучше выдерживающие высокую температуру».

Дело заключалось, однако, не только в отсутствии соответствующих материалов. Еще оставались неизвестными современные принципы термодинамики, в частности эквивалентность тепла и работы, без чего невозможно было определить наивыгоднейшие соотношения основных элементов двигателя. Теплообменники делали с малой поверхностью, из-за чего двигатели работали при непомерно высоких температурах и быстро выходили из строя.

Попытки усовершенствовать Стирлинг были предприняты после второй мировой войны. Наиболее существенные из них заключались в том, что рабочий газ стали применять сжатым до 100 атм и использовать не воздух, а водород, имеющий более высокий коэффициент теплопроводности, низкую вязкость и, кроме того, не окисляющий смазки.

Устройство двигателя внешнего сгорания в его современном виде схематически показано на рис. 1. В закрытом с одной стороны цилиндре находятся два поршня. Верхний - поршень-в ы тесните ль служит для ускорения процесса периодического нагрева и охлаждения рабочего газа. Он представляет собой полый закрытый цилиндр из нержавеющей стали, плохо проводящий тепло, и перемещается под действием штока, связанного с кривошипно-шатунным механизмом.

Нижний поршень - рабочий (на рисунке показан в сечении). Он передает усилие на кривошипно-шатунный механизм через полый шток, внутри которого проходит шток вытеснителя. Рабочий поршень снабжен уплотняющими кольцами.

Под рабочим поршнем имеется буферная емкость, образующая подушку, выполняющую функцию маховика - сглаживать неравномерность крутящего момента благодаря отбору части энергии во время рабочего хода и отдаче ее на вал двигателя во время хода сжатия. Для изоляции объема цилиндра от окружающего пространства служат уплотнения типа «заворачивающийся чулок». Это резиновые трубки, прикрепленные одним концом к штоку, а другим к корпусу.

Верхняя часть цилиндра соприкасается с подогревателем, а нижняя - с холодильником. Соответственно в нем выделяются «горячий» и «холодный» объемы, свободно сообщающиеся между собой посредством трубопровода, в котором находится регенератор (теплообменник). Регенератор заполнен путанкой из проволоки малого диаметра (0,2 мм) и обладает высокой теплоемкостью (например, к. п. д. регенераторов фирмы Филипе превышает 95%).

Рабочий процесс двигателя Стирлинга может быть осуществлен и без вытеснителя, на основе применения золотникового распределителя рабочего заряда.

В нижней части двигателя расположен кривошипно-шатунный механизм, служащий для преобразования возвратно-поступательного движения поршня во вращательное движение вала. Особенностью этого механизма является наличие двух коленчатых валов, соединенных двумя шестернями со спиральными зубьями, вращающимися навстречу друг другу. Шток вытеснителя связан с коленчатыми валами посредством нижнего коромысла и прицепных шатунов. Шток рабочего поршня соединяется с коленчатыми валами через верхнее коромысло и прицепные шатуны. Система одинаковых шатунов образует подвижный деформируемый ромб, откуда и название этой передачи - ромбическая. Ромбическая передача обеспечивает необходимый сдвиг фаз при движении поршней. Она полностью уравновешена, в ней не возникают боковые усилия на штоки поршней.

В пространстве, ограниченном, рабочим поршнем, находится рабочий газ - водород или гелий. Полный объем газа в цилиндре не зависит от положения вытеснителя. Изменения объема, связанные со сжатием и расширением рабочего газа, происходят за счет перемещения рабочего поршня.

При работе двигателя верхняя часть цилиндра постоянно нагревается, например, от камеры сгорания, в которую впрыскивается жидкое топливо. Нижняя часть цилиндра постоянно охлаждается, например, холодной водой, прокачиваемой через водяную рубашку, окружающую цилиндр. Замкнутый цикл Стирлинга состоит из четырех тактов, изображенных на рис. 2.

Такт I - охлаждение . Рабочий поршень находится в крайнем нижнем положении, вытеснитель движется вверх. При этом рабочий газ перетекает из «горячего» объема над вытеснителем в «холодный» объем под ним. Проходя по пути через регенератор, рабочий газ отдает ему часть своего тепла, а затем охлаждается в «холодном» объеме.

Такт II - сжатие . Вытеснитель остается в верхнем положении, рабочий поршень движется вверх, сжимая рабочий газ при низкой температуре.

Такт III - нагревание . Рабочий поршень находится в верхнем положении, вытеснитель движется вниз. При этом сжатый холодный рабочий газ устремляется из-под вытеснителя в освобождающееся пространство над ним. По дороге рабочий газ проходит через регенератор, где предварительно подогревается, попадает в «горячую» полость цилиндра и нагревается еще сильнее.

Такт IV - расширение (рабочий ход) . Нагреваясь, рабочий газ расширяется, передвигая при этом вытеснитель и вместе с ним рабочий поршень вниз. Совершается полезная работа.

Стирлинг имеет замкнутый цилиндр. На рис. 3, а показана диаграмма теоретического цикла (диаграмма V - Р). По оси абсцисс отложены объемы цилиндра, по оси ординат - давления в цилиндре. Первый такт является изотермическим I-II, второй происходит при постоянном объеме II-III, третий - изотермический III-IV, четвертый - при постоянном объеме IV-I. Так как давление во время расширения горячего газа (III-IV) больше давления во время сжатия холодного газа (I-II), то работа расширения больше работы сжатия. Полезную работу цикла можно графически изобразить в виде криволинейного четырехугольника I-II-III-IV.

В действительном процессе поршень и вытеснитель движутся непрерывно, так как они связаны с кривошипно-шатунным механизмом, поэтому диаграмма действительного цикла скруглена (рис. 3, б).

Теоретический к. п. д. двигателя стирлинга составляет 70%. Исследования показали, что на практике можно получить к. п. д., равный 50%. Это значительно больше, чем у самых лучших газовых турбин (28%), бензиновых двигателей (30%) и дизелей (40%).


Стирлинг может работать на бензине, керосине, дизельном, газообразном и даже твердом топливе. По сравнению с другими двигателями, он имеет более мягкий и почти бесшумный ход. Объясняется это низкой степенью сжатия (1,3÷1,5), к тому же давление в цилиндре повышается плавно, а не взрывом. Продукты сгорания также выпускаются без Шума, так как сгорание происходит постоянно. В них сравнительно немного токсичных составляющих, потому что горение топлива происходит непрерывно и при постоянном избытке кислорода (α=1,3).

Стирлинг с ромбической передачей полностью уравновешен, в нем не возникает вибраций. Это качество, в частности, было учтено американскими инженерами, установившими одноцилиндровый стирлинг на искусственном спутнике Земли, где даже небольшая вибрация и неуравновешенность могут привести к потере ориентации.

Одним из проблемных вопросов остается охлаждение. В стирлинге с выпускными газами отводится только 9% тепла, получаемого от топлива, поэтому, например, при установке его на автомобиле пришлось бы делать радиатор примерно в 2,5 раза больше, чем при использовании бензинового двигателя той же мощности. Задача решается проще на судовых установках, где эффективное охлаждение обеспечивается неограниченным количеством забортной воды.


На рис. 4 показан разрез двухцилиндрового катерного двигателя Филипс мощностью 115 л. с. при 3000 об/мин с горизонтальным расположением цилиндров. Общий рабочий объем каждого цилиндра 263 см 3 . Поршни, расположенные оппозитно, соединены с двумя траверсами, что позволило полностью уравновесить газовые силы и обойтись без буферных объемов. Подогреватель выполнен из трубок, окружающих камеру сгорания, по которым проходит рабочий газ. Охладителем служит трубчатый холодильник, через который прокачивается забортная вода. Двигатель имеет два коленчатых вала, соединенных с гребным валом посредством червячных передач. Высота двигателя всего 500 мм, что позволяет установить его под настилом и таким образом уменьшить размеры машинного отсека.

Мощность стирлинга регулируется в основном изменением давления рабочего газа. Одновременно, чтобы поддерживать температуру подогревателя постоянной, регулируется и подача топлива. Для двигателя внешнего сгорания пригодны практически любые источники тепла. Важно, что он может превращать в полезную работу низкотемпературную энергию, на что не способны двигатели внутреннего сгорания. Из кривой на рис. 5 видно, что при температуре подогревателя всего 350° С к. п. д. стирлинга еще равен ≈ 20%.

Стирлинг экономичен - удельный расход топлива у него составляет всего 150 г/л. с. час. В энергетической установке «двигатель стирлинг- аккумулятор тепла», использующейся на американских спутниках Земли, тепловым аккумулятором служит гидрит лития, который поглощает тепло в период «освещения» и Отдает его стирлингу, когда спутник находится на теневой стороне Земли. На спутнике двигатель служит для привода генератора мощностью 3 квт при 2400 об/мин.

Создан опытный мотороллер со Стирлингом и аккумулятором тепла. Использование аккумулятора тепла и стирлинга на подводной лодке позволяет ей в несколько раз дольше идти в погруженном положении.

Литература

  • 1. Смирнов Г. В. Двигатели внешнего сгорания. «Знание», М., 1967.
  • 2. Dr. Ir. R. I. Meijer. Der Philips - Stirlingmotor, MTZ, N 7, 1968.
  • 3. Curtis Anthony. Hot air and the wind of change. The Stirling engine and its revival. Motor (Engl.), 1969, (135), N 3488.

Двигатели внешнего сгорания

Важным элементом реализации программы энергосбережения является обеспечение автономными источниками электроэнергии и тепла небольших жилых образований и удаленных от централизованных сетей потребителей. Для решения этих задач как нельзя лучше подходят инновационные установки для генерации электроэнергии и тепла на основе двигателей внешнего сгорания. В качестве топлива может использоваться как традиционные виды топлива, так и попутный нефтяной газ, биогаз, получаемый из древесных стружек и пр.

На протяжении последних 10 лет отмечались повышения цен на ископаемое топливо, повышенное внимание к выбросам СО 2 , а также растущее желание перестать зависеть от ископаемого топлива и полностью обеспечивать себя энергией. Это стало следствием развития огромного рынка технологий, способных производить энергию из биомассы.

Двигатели внешнего сгорания были изобретены почти 200 лет тому назад, в 1816 году. Вместе с паровым двигателем, двух- и четырехтактным двигателем внутреннего сгорания, двигатели внешнего сгорания считаются одними из основных типов двигателей. Они были разработаны с целью создания двигателей, которые были бы более безопасными и производительными, чем паровой двигатель. В самом начале 18-го века отсутствие подходящих материалов приводило к многочисленным случаям со смертельным исходом в связи со взрывами паровых двигателей, находящихся под давлением.

Значительный рынок для двигателей внешнего сгорания сформировался во второй половине 18-го века, в частности, в связи с более мелкими сферами применения, где их можно было безопасно эксплуатировать без необходимости в услугах квалифицированных операторов.

После изобретения двигателя внутреннего сгорания в конце 18-го века рынок для двигателей внешнего сгорания исчез. Стоимость производства двигателя внутреннего сгорания в сравнении со стоимостью производства внешнего сгорания ниже. Основной недостаток двигателей внутреннего сгорания заключается в том, что для их работы необходимо чистое, ископаемое топливо, увеличивающее выбросы СО2, топливо. Однако, до недавнего времени стоимость ископаемого топлива была низкой, а выбросам СО2 не уделялось должного внимания.

Принцип работы двигателя внешнего сгорания

В отличие от широко известного процесса внутреннего сгорания, при котором топливо сжигается внутри двигателя, двигатель внешнего сгорания, приводится в действие внешним источником тепла. Или, точнее говоря, она приводится в действие разностями температур, создаваемыми внешними источниками нагревания и охлаждения.

Этими внешними источниками нагревания и охлаждения могут служить отработанные газы биомассы и охлаждающая вода соответственно. Процесс приводит к вращению генератора, монтированного на двигателе, посредством чего производится энергия.


Все двигатели внутреннего сгорания приводятся в действие разностями температур. Бензиновые, дизельные двигатели и двигатели внешнего сгорания основаны на той особенности, что для сжатия холодного воздуха необходимо меньше усилий, чем для сжатия горячего воздуха.

Бензиновые и дизельные двигатели всасывают холодный воздух и сжимают этот воздух, прежде чем он подогревается в процессе внутреннего сгорания, который происходит внутри цилиндра. После подогревания воздуха над поршнем поршень перемещается вниз, посредством чего воздух расширяется. Так как воздух горячий, сила, действующая на шток поршня, велика. Когда поршень доходит до низа, клапаны открываются и горячие выхлопы заменяются новым, свежим, холодным воздухом. При движении поршня вверх холодный воздух сжимается, причем сила, действующая на шток поршня, меньше, чем при его движении вниз.

Двигатель внешнего сгорания работает в соответствии с немного другим принципом. В нем нет клапанов, он герметически запаян, а воздух подогревается и охлаждается при помощи теплообменных аппаратов горячего и холодного контура. Встроенный насос, приводимый в действие движением поршня, обеспечивает движение воздуха туда и обратно между этими двумя теплообменными аппаратами. Во время охлаждения воздуха в теплообменном аппарате холодного контура поршень сжимает воздух.

После сжатия воздух затем подогревается в теплообменном аппарате горячего контура, прежде чем поршень начинает двигаться в обратном направлении и использовать расширение горячего воздуха для приведения в действие двигателя.

Эта статья посвящена одному изобретению, запатентованному ещё в девятнадцатом веке шотландским одним священником Стирлингом. Как и все предшественники, это был двигатель внешнего сгорания. Только отличие его от остальных в том, что он может работать и бензине, и на мазуте, и даже на угле и дровах.

В XIX веке возникла необходимость замены паровых двигателей на что-то более безопасное, так как котлы часто взрывались из-за высокого давления пара и некоторых серьезных конструктивных недостатков.

Хорошим вариантом стал двигатель внешнего сгорания, который запатентовал в 1816 году шотландский священник Роберт Стирлинг.

Правда, «двигатели горячего воздуха» делали и раньше, ещё в XVII веке. Но Стирлинг добавил в установку очиститель. В современном понимании ‒ регенератор.

Он повысил производительность установки, сохраняя тепло в тёплой зоне машины, в тот момент, когда рабочее тело охлаждалось. Это значительно увеличило эффективность системы.

Изобретение нашло широкое практическое применение, была стадия подъема и развития, но затем Стирлинги были незаслуженно забыты.

Они уступили место паровым машинам и двигателям внутреннего сгорания, а в двадцатом веке снова возродились.

Ввиду того что этот принцип внешнего сгорания сам по себе очень интересен, сегодня над созданием новых моделей трудятся лучшие инженеры и любители в США, Японии, Швеции…

Двигатель внешнего сгорания. Принцип работы

«Стирлинг» ‒ как мы уже упоминали, разновидность двигателя внешнего сгорания. Основной принцип его работы заключается в постоянном чередовании нагревания и охлаждения рабочего тела в замкнутом пространстве и получении энергии, благодаря возникающему при этом изменению объёма рабочего тела.

Как правило рабочим телом выступает воздух, но может использоваться водород или гелий. В опытных образцах пробовали двуокись азота, фреоны, сжиженный пропан-бутан и даже воду.

Кстати, вода пребывает в жидком состоянии на протяжении всего термодинамического цикла. А сам «стирлинг» с жидким рабочим телом имеет компактные размеры, высокую удельную мощность и высокое рабочее давление.

Виды стирлингов

Существуют три классических вида двигателя Стирлинга:

Применение

Двигатель Стирлинга можно применять в случаях, если требуется простой, компактный преобразователь тепловой энергии или когда эффективность других типов тепловых машин ниже: к примеру, если разница температур недостаточна для использования газовой или .

Вот конкретные примеры использования:

  • Уже сегодня выпускаются автономные генераторы для туристов. Есть модели, которые работают от газовой конфорки;

NASA заказало вариант генератора на основе «стирлинга», который работает от ядерного и радиоизотопного источников тепла. Он будет использоваться в космических экспедициях.

  • «Стирлинг» для перекачки жидкости гораздо проще установки «двигатель-насос». В качестве рабочего поршня он может использовать перекачиваемую жидкость, которая будет заодно охлаждать рабочее тело.Таким насосом можно накачивать воду в ирригационные каналы, используя солнечное тепло, подавать горячую воду от солнечного коллектора в дом, перекачивать химические реагенты, поскольку система полностью герметична;
  • Производителей бытовых холодильников внедряют модели на «стирлингах». Они будут экономнее, а в качестве хладагента предполагается использоваться обычный воздух;
  • Совмещённый Стирлинг с тепловым насосом оптимизирует систему отопления в доме. Он будет отдавать бросовое тепло «холодного» цилиндра, а полученную механическую энергию может использовать для подкачки тепла, которое идет из окружающей среды;
  • Сегодня на всех подводных лодках ВМС Швеции установлены двигатели Стирлинга. Они работают на жидком кислороде, который в дальнейшем используется для дыхания. Очень важный фактор для лодки, низкий уровень шума, а недостатки типа: «большой размер», «необходимость охлаждения» – в условиях подводной лодки не существенны. Аналогичными установками оснащены и новейшие японские подводные лодки типа «Сорю»;
  • Двигатель Стирлинга используется для преобразования солнечной энергии в электрическую. Для этого он монтируется в фокусе параболического зеркала. Компания Stirling Solar Energy строит солнечные коллекторы мощностью до 150 кВт на зеркало. Они используются на крупнейшей в мире солнечной электростанции в южной Калифорнии.

Преимущества и недостатки

Современный уровень проектирования и технологии изготовления позволяют повысить коэффициент полезного действия «Стирлинга» до 70 процентов.

  • Что удивительно, крутящий момент двигателя практически не зависит от скорости вращения коленчатого вала;
  • Силовая установка не содержит системы зажигания, клапанной системы и распредвала.
  • На протяжении всего срока эксплуатации не нужны регулировки и настройки.
  • Двигатель не «глохнет», а простота конструкции позволяет эксплуатировать его в автономном режиме продолжительное время;
  • Можно использовать любые источники тепловой энергии, от дров до уранового топлива.
  • Сжигание топлива происходит вне двигателя, что способствует его полному дожиганию и минимизации выбросов токсичных веществ.
  • Так как топливо сгорает вне двигателя, то отвод тепла идёт через стенки радиатора, а это дополнительные габариты;
  • Материалоемкость. Чтобы сделать Стирлинг-машину компактной и мощной требуются дорогие жаропрочные стали, способные выдерживать высокое рабочее давление и имеющие низкую теплопроводность;
  • Нужна специальная смазка, обычная для «Стирлингов» не подходит, так как коксуется при высоких температурах;
  • Чтобы получить высокую удельную мощность, рабочее тело в «Стирлингах» применяют водород и гелий.

Водород отличается взрывоопасностью, а при высоких температурах может растворяться в металлах, образуя при этом металлогидриты. Иными словами, происходит разрушение цилиндров двигателя.

А ещё водород и гелий обладают высокой проникающей способностью и легко просачиваются через уплотнения, понижая рабочее давление.

Если вы, познакомившись с нашей статьёй, захотите приобрести устройство — двигатель внешнего сгорания, не бегите в ближайший магазин, такая штука не продаётся, увы…

Сами понимаете, те, кто занимается усовершенствованием и внедрением этой машины, держат свои разработки в секрете и продают их только солидным покупателям.

Смотрите это видео и делайте своими руками.